Коррелирует

Коррелирует

Содержание

Применение корреляционного анализа в психологии 2747

Применение статистических методов при обработке материалов психологических исследований дает большую возможность извлечь из экспериментальных данных полезную информацию. Одним из самых распространенных методов статистики является корреляционный анализ.

Термин «корреляция» впервые применил французский палеонтолог Ж. Кювье, который вывел «закон корреляции частей и органов животных» (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел английский биолог и статистик Ф. Гальтон (не просто «связь» – relation, а «как бы связь» – corelation).

Корреляционный анализ – это проверка гипотез о связях между переменными с использованием коэффициентов корреляции, двумерной описательной статистики, количественной меры взаимосвязи (совместной изменчивости) двух переменных. Таким образом, это совокупность методов обнаружения корреляционной зависимости между случайными величинами или признаками.

Корреляционный анализ для двух случайных величин заключает в себе:

  • построение корреляционного поля и составление корреляционной таблицы;
  • вычисление выборочных коэффициентов корреляции и корреляционных отношений;
  • проверку статистической гипотезы значимости связи.

Основное назначение корреляционного анализа – выявление связи между двумя или более изучаемыми переменными, которая рассматривается как совместное согласованное изменение двух исследуемых характеристик. Данная изменчивость обладает тремя основными характериcтиками: формой, направлением и силой.

По форме корреляционная связь может быть линейной или нелинейной. Более удобной для выявления и интерпретации корреляционной связи является линейная форма. Для линейной корреляционной связи можно выделить два основных направления: положительное («прямая связь») и отрицательное («обратная связь»).

Сила связи напрямую указывает, насколько ярко проявляется совместная изменчивость изучаемых переменных. В психологии функциональная взаимосвязь явлений эмпирически может быть выявлена только как вероятностная связь соответствующих признаков. Наглядное представление о характере вероятностной связи дает диаграмма рассеивания – график, оси которого соответствуют значениям двух переменных, а каждый испытуемый представляет собой точку.

В качестве числовой характеристики вероятностной связи используют коэффициенты корреляции, значения которых изменяются в диапазоне от –1 до +1. После проведения расчетов исследователь, как правило, отбирает только наиболее сильные корреляции, которые в дальнейшем интерпретируются (табл. 1).

Критерием для отбора «достаточно сильных» корреляций может быть как абсолютное значение самого коэффициента корреляции (от 0,7 до 1), так и относительная величина этого коэффициента, определяемая по уровню статистической значимости (от 0,01 до 0,1), зависящему от размера выборки. В малых выборках для дальнейшей интерпретации корректнее отбирать сильные корреляции на основании уровня статистической значимости. Для исследований, которые проведены на больших выборках, лучше использовать абсолютные значения коэффициентов корреляции.

Таким образом, задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

В настоящее время разработано множество различных коэффициентов корреляции. Наиболее применяемыми являются r-Пирсона, r-Спирмена и τ-Кендалла. Современные компьютерные статистические программы в меню «Корреляции» предлагают именно эти три коэффициента, а для решения других исследовательских задач предлагаются методы сравнения групп.

Выбор метода вычисления коэффициента корреляции зависит от типа шкалы, к которой относятся переменные (табл. 2).

Для переменных с интервальной и с номинальной шкалой используется коэффициент корреляции Пирсона (корреляция моментов произведений). Если, по меньшей мере, одна из двух переменных имеет порядковую шкалу или не является нормально распределенной, используется ранговая корреляция по Спирмену или

t-Кендалла. Если же одна из двух переменных является дихотомической, можно использовать точечную двухрядную корреляцию (в статистической компьютерной программе SPSS эта возможность отсутствует, вместо нее может быть применен расчет ранговой корреляции). В том случае если обе переменные являются дихотомическими, используется четырехполевая корреляция (данный вид корреляции рассчитываются SPSS на основании определения мер расстояния и мер сходства). Расчет коэффициента корреляции между двумя недихотомическими переменными возможен только тогда, кода связь между ними линейна (однонаправлена). Если связь, к примеру, U-образная (неоднозначная), коэффициент корреляции не пригоден для использования в качестве меры силы связи: его значение стремится к нулю.

Таким образом, условия применения коэффициентов корреляции будут следующими:

  • переменные, измеренные в количественной (ранговой, метрической) шкале на одной и той же выборке объектов;
  • связь между переменными является монотонной.

Основная статистическая гипотеза, которая проверяется корреляционным анализом, является ненаправленной и содержит утверждение о равенстве корреляции нулю в генеральной совокупности H0: rxy = 0. При ее отклонении принимается альтернативная гипотеза H1: rxy ≠ 0 о наличии положительной или отрицательной корреляции – в зависимости от знака вычисленного коэффициента корреляции.

На основании принятия или отклонения гипотез делаются содержательные выводы. Если по результатам статистической проверки H0: rxy = 0 не отклоняется на уровне a, то содержательный вывод будет следующим: связь между X и Y не обнаружена. Если же при H0 rxy = 0 отклоняется на уровне a, значит, обнаружена положительная (отрицательная) связь между X и Y. Однако к интерпретации выявленных корреляционных связей следует подходить осторожно. С научной точки зрения, простое установление связи между двумя переменными не означает существования причинно-следственных отношений. Более того, наличие корреляции не устанавливает отношения последовательности между причиной и следствием. Оно просто указывает, что две переменные взаимосвязаны между собой в большей степени, чем это можно ожидать при случайном совпадении. Тем не менее, при соблюдении осторожности применение корреляционных методов при исследовании причинно-следственных отношений вполне оправдано. Следует избегать категоричных фраз типа «переменная X является причиной увеличения показателя Y». Подобные утверждения следует формулировать как предположения, которые должны быть строго обоснованы теоретически.

Подробное описание математической процедуры для каждого коэффициента корреляции дано в учебниках по математической статистике ; ; ; и др. Мы же ограничимся описанием возможности применения этих коэффициентов в зависимости от типа шкалы измерения.

Корреляция метрических переменных

Для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке, применяется коэффициент корреляции r-Пирсона. Сам коэффициент характеризует наличие только линейной связи между признаками, обозначаемыми, как правило, символами X и Y. Коэффициент линейной корреляции является параметрическим методом и его корректное применение возможно только в том случае, если результаты измерений представлены в шкале интервалов, а само распределение значений в анализируемых переменных отличается от нормального в незначительной степени. Существует множество ситуаций, в которых его применение целесообразно. Например: установление связи между интеллектом школьника и его успеваемостью; между настроением и успешностью выхода из проблемной ситуации; между уровнем дохода и темпераментом и т. п.

Коэффициент Пирсона находит широкое применение в психологии и педагогике. Например, в работах И. Я. Каплуновича и П. Д. Рабиновича, М. П. Нуждиной для подтверждения выдвинутых гипотез был использован расчет коэффициента линейной корреляции Пирсона.

При обработке данных «вручную» необходимо вычислить коэффициент корреляции, а затем определить p-уровень значимости (в целях упрощения проверки данных пользуются таблицами критических значений rxy, которые составлены с помощью этого критерия). Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем –1. Эти два числа +1 и –1 являются границами для коэффициента корреляции. Когда при расчете получается величина, большая +1 или меньшая –1, это свидетельствует, что произошла ошибка в вычислениях.

При вычислениях на компьютере статистическая программа (SPSS, Statistica) сопровождает вычисленный коэффициент корреляции более точным значением p-уровня.

Для статистического решения о принятии или отклонении H0 обычно устанавливают α = 0,05, а для большого объема наблюдений (100 и более) α = 0,01. Если p ≤ α, H0 отклоняется и делается содержательный вывод, что обнаружена статистически достоверная (значимая) связь между изучаемыми переменными (положительная или отрицательная – в зависимости от знака корреляции). Когда p > α, H0 не отклоняется, содержательный вывод ограничен констатацией, что связь (статистически достоверная) не обнаружена.

Если связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует проверить возможные причины недостоверности связи.

Нелинейность связи – для этого проанализировать график двумерного рассеивания. Если связь нелинейная, но монотонная, перейти к ранговым корреляциям. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, и вычислить корреляции отдельно для каждой части выборки, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака.

Наличие выбросов и выраженная асимметрия распределения одного или обоих признаков. Для этого необходимо посмотреть гистограммы распределения частот обоих признаков. При наличии выбросов или асимметрии исключить выбросы или перейти к ранговым корреляциям.

Неоднородность выборки (проанализировать график двумерного рассеивания). Попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции:

  • связь обусловлена выбросами. При наличии выбросов перейти к ранговым корреляциям или исключить выбросы;
  • связь обусловлена влиянием третьей переменной. Если есть подобное явление, необходимо вычислить корреляцию не только для всей выборки, но и для каждой группы в отдельности. Если «третья» переменная метрическая – вычислить частную корреляцию.

Коэффициент частной корреляции rxy-z вычисляется в том случае, если необходимо проверить предположение, что связь между двумя переменными X и Y не зависит от влияния третьей переменной Z. Очень часто две переменные коррелируют друг с другом только за счет того, что обе они согласованно меняются под влиянием третьей переменной. Иными словами, на самом деле связь между соответствующими свойствами отсутствует, но проявляется в статистической взаимосвязи под влиянием общей причины. Например, общей причиной изменчивости двух переменных может являться возраст при изучении взаимосвязи различных психологических особенностей в разновозрастной группе. При интерпретации частной корреляции с позиции причинности следует быть осторожным, так как если Z коррелирует и с X и с Y, а частная корреляция rxy-z близка к нулю, из этого не обязательно следует, что именно Z является общей причиной для X и Y.

Корреляция ранговых переменных

Если к количественным данным неприемлем коэффициент корреляции r-Пирсона, то для проверки гипотезы о связи двух переменных после предварительного ранжирования могут быть применены корреляции r-Спирмена или τ-Кендалла. Например, в исследовании психофизических особенностей музыкально одаренных подростков И. А. Лавочкина был использован критерий Спирмена.

Для корректного вычисления обоих коэффициентов (Спирмена и Кендалла) результаты измерений должны быть представлены в шкале рангов или интервалов. Принципиальных отличий между этими критериями не существует, но принято считать, что коэффициент Кендалла является более «содержательным», так как он более полно и детально анализирует связи между переменными, перебирая все возможные соответствия между парами значений. Коэффициент Спирмена более точно учитывает именно количественную степень связи между переменными.

Коэффициент ранговой корреляции Спирмена является непараметрическим аналогом классического коэффициента корреляции Пирсона, но при его расчете учитываются не связанные с распределением показатели сравниваемых переменных (среднее арифметическое и дисперсия), а ранги. Например, необходимо определить связь между ранговыми оценками качеств личности, входящими в представление человека о своем «Я реальном» и «Я идеальном».

Коэффициент Спирмена широко используется в психологических исследованиях. Например, в работе Ю. В. Бушова и Н. Н. Несмеловой : для изучения зависимости точности оценки и воспроизведения длительности звуковых сигналов от индивидуальных особенностей человека был использован именно он.

Так как этот коэффициент – аналог r-Пирсона, то и применение его для проверки гипотез аналогично применению коэффициента r-Пирсона. То есть проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода – те же. В компьютерных программах (SPSS, Statistica) уровни значимости для одинаковых коэффициентов r-Пирсона и r-Спирмена всегда совпадают.

Преимущество коэффициента r-Спирмена по сравнению с коэффициентом r-Пирсона – в большей чувствительности к связи. Мы используем его в следующих случаях:

  • наличие существенного отклонения распределения хотя бы одной переменной от нормального вида (асимметрия, выбросы);
  • появление криволинейной (монотонной) связи.

Ограничением для применения коэффициента r-Спирмена являются:

  • по каждой переменной не менее 5 наблюдений;
  • коэффициент при большом количестве одинаковых рангов по одной или обеим переменным дает огрубленное значение.

Коэффициент ранговой корреляции τ-Кендалла является самостоятельным оригинальным методом, опирающимся на вычисление соотношения пар значений двух выборок, имеющих одинаковые или отличающиеся тенденции (возрастание или убывание значений). Этот коэффициент называют еще коэффициентом конкордации. Таким образом, основной идеей данного метода является то, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по X совпадает по направлению с изменением по Y, это свидетельствует о положительной связи, если не совпадает – об отрицательной связи, например, при исследовании личностных качеств, имеющих определяющее значение для семейного благополучия. В этом методе одна переменная представляется в виде монотонной последовательности (например, данные мужа) в порядке возрастания величин; другой переменной (например, данные жены) присваиваются соответствующие ранговые места. Количество инверсий (нарушений монотонности по сравнению с первым рядом) используется в формуле для корреляционных коэффициентов.

При подсчете τ-Кендалла «вручную» данные сначала упорядочиваются по переменной X. Затем для каждого испытуемого подсчитывается, сколько раз его ранг по Y оказывается меньше, чем ранг испытуемых, находящихся ниже. Результат записывается в столбец «Совпадения». Сумма всех значений столбца «Совпадение» и есть P – общее число совпадений, подставляется в формулу для вычисления коэффициента Кендалла, который более прост в вычислительном отношении, но при возрастании выборки, в отличие от r-Спирмена, объем вычислений возрастает не пропорционально, а в геометрической прогрессии. Так, например, при N = 12 необходимо перебрать 66 пар испытуемых, а при N = 489 – уже 1128 пар, т. е. объем вычислений возрастает более чем в 17 раз. При вычислениях на компьютере в статистической программе (SPSS, Statistica) коэффициент Кендалла обсчитывается аналогично коэффициентам r-Спирмена и r-Пирсона. Вычисленный коэффициент корреляции τ-Кендалла характеризуется более точным значением p-уровня.

Применение коэффициента Кендалла является предпочтительным, если в исходных данных имеются выбросы.

Особенностью ранговых коэффициентов корреляции является то, что максимальным по модулю ранговым корреляциям (+1, –1) не обязательно соответствуют строгие прямо или обратно пропорциональные связи между исходными переменными X и Y: достаточна лишь монотонная функциональная связь между ними. Ранговые корреляции достигают своего максимального по модулю значения, если большему значению одной переменной всегда соответствует большее значение другой переменной (+1), или большему значению одной переменной всегда соответствует меньшее значение другой переменной и наоборот (–1).

Проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода те же, что и для случая r-Спирмена или r-Пирсона.

Если статистически достоверная связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует сначала перейти от коэффициента

r-Спирмена к коэффициенту τ-Кендалла (или наоборот), а затем проверить возможные причины недостоверности связи:

  • нелинейность связи: для этого посмотреть график двумерного рассеивания. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака;
  • неоднородность выборки: посмотреть график двумерного рассеивания, попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции (по аналогии с метрическими коэффициентами корреляции).

Корреляция дихотомических переменных

При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент j, который представляет собой коэффициент корреляции для дихотомических данных.

Величина коэффициента φ лежит в интервале между +1 и –1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков. Однако интерпретация φ может выдвигать специфические проблемы. Дихотомические данные, входящие в схему вычисления коэффициента φ, не похожи на двумерную нормальную поверхность, следовательно, неправильно считать, что интерпретируемые значения rxy=0,60 и φ = 0,60 одинаковы. Коэффициент φ можно вычислить методом кодирования, а также используя так называемую четырехпольную таблицу или таблицу сопряженности.

Для применения коэффициента корреляции φ необходимо соблюдать следующие условия:

  • сравниваемые признаки должны быть измерены в дихотомической шкале;
  • число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Данный вид корреляции рассчитывают в компьютерной программе SPSS на основании определения мер расстояния и мер сходства. Некоторые статистические процедуры, такие как факторный анализ, кластерный анализ, многомерное масштабирование, построены на применении этих мер, а иногда сами представляют добавочные возможности для вычисления мер подобия.

В тех случаях когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в шкале интервалов или отношений (переменная Y), используется бисериальный коэффициент корреляции, например, при проверке гипотез о влиянии пола ребенка на показатель роста и веса. Этот коэффициент изменяется в диапазоне от –1 до +1, но его знак для интерпретации результатов не имеет значения. Для его применения необходимо соблюдать следующие условия:

  • сравниваемые признаки должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y – в шкале интервалов или отношений;
  • переменная Y имеет нормальный закон распределения;
  • число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Если же переменная X измерена в дихотомической шкале, а переменная Y в ранговой шкале (переменная Y), можно использовать рангово-бисериальный коэффициент корреляции, который тесно связан с τ-Кендалла и использует в своем определении понятия совпадения и инверсии. Интерпретация результатов та же.

Проведение корреляционного анализа с помощью компьютерных программ SPSS и Statistica – простая и удобная операция. Для этого после вызова диалогового окна Bivariate Correlations (Analyze>Correlate> Bivariate…) необходимо переместить исследуемые переменные в поле Variables и выбрать метод, с помощью которого будет выявляться корреляционная связь между переменными. В файле вывода результатов для каждого рассчитываемого критерия содержится квадратная таблица (Correlations). В каждой ячейке таблицы приведены: само значение коэффициента корреляции (Correlation Coefficient), статистическая значимость рассчитанного коэффициента Sig, количество испытуемых.

В шапке и боковой графе полученной корреляционной таблицы содержатся названия переменных. Диагональ (левый верхний – правый нижний угол) таблицы состоит из единиц, так как корреляция любой переменной с самой собой является максимальной. Таблица симметрична относительно этой диагонали. Если в программе установлен флажок «Отмечать значимые корреляции», то в итоговой корреляционной таблице будут отмечены статистически значимые коэффициенты: на уровне 0,05 и меньше – одной звездочкой (*), а на уровне 0,01 – двумя звездочками (**).

Итак, подведем итоги: основное назначение корреляционного анализа – это выявление связи между переменными. Мерой связи являются коэффициенты корреляции, выбор которых напрямую зависит от типа шкалы, в которой измерены переменные, числа варьирующих признаков в сравниваемых переменных и распределения переменных. Наличие корреляции двух переменных еще не означает, что между ними существует причинная связь. Хотя корреляция прямо не указывает на причинную связь, она может быть ключом к разгадке причин. На ее основе можно сформировать гипотезы. В некоторых случаях отсутствие корреляции имеет более глубокое воздействие на гипотезу о причинной связи. Нулевая корреляция двух переменных может свидетельствовать, что никакого влияния одной переменной на другую не существует.

Корреляции в дипломных работах по психологии

Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

Материалы по корреляциям в сети слишком научны. Неспециалисту трудно разобраться в формулах. В то же время понимание смысла корреляций необходимо маркетологу, социологу, медику, психологу – всем, кто проводит исследования на людях.

В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

Что такое корреляция
Численное выражение корреляционной связи

  • Прямая и обратная корреляция
  • Сильная и слабая корреляция

Корреляционный анализ в психологии
Коэффициенты корреляции Пирсона и Спирмена
Как рассчитать коэффициент корреляции

  • Расчет корреляций с помощью электронных таблиц Microsoft Excel
  • Как вычислить значение корреляции с помощью статистической программы STATISTICA

Использование корреляционного анализа в дипломных работах по психологии

Что такое корреляция

Корреляция – это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа – машина едет быстрее. Вы сбавляете газ – авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

Это зависимость функциональная – скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод – между продажами фирмы и окладом сотрудников есть прямая зависимость – чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим – связь продаж и оклада сотрудников есть, и она корреляционная.

В основе функциональной связи (педаль газа – скорость) лежит физический закон. В основе корреляционной связи (продажи – оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

Численное выражение корреляционной зависимости

Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

Например, изучается роль чтения в жизни людей. Исследователи взяли группу из 40 человек и измерили у каждого испытуемого два показателя: 1) сколько времени он читает в неделю; 2) в какой мере он считает себя благополучным (по шкале от 1 до 10). Ученые занесли эти данные в два столбика и с помощью статистической программы рассчитали корреляцию между чтением и благополучием. Предположим, они получили следующий результат -0,76. Но что значит это число? Как его проинтерпретировать? Давайте разбираться.

Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

  1. Знак «+» или «-» отражает направление зависимости.
  2. Величина коэффициента отражает силу зависимости.

Прямая и обратная

Знак плюс перед коэффициентом указывает на то, что связь между явлениями или показателями прямая. То есть, чем больше один показатель, тем больше и другой. Выше оклад — выше продажи. Такая корреляция называется прямой, или положительной.

Если коэффициент имеет знак минус, значит, корреляция обратная, или отрицательная. В этом случае чем выше один показатель, тем ниже другой. В примере с чтением и благополучием мы получили -0,76, и это значит, что, чем больше люди читают, тем ниже уровень их благополучия.

Сильная и слабая

Корреляционная связь в численном выражении – это число в диапазоне от -1 до +1. Обозначается буквой «r». Чем выше число (без учета знака), тем корреляционная связь сильнее.

Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

Максимально возможная сила зависимости – это 1 или -1. Как это понять и представить?

Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

Испытуемый

Успеваемость (баллы)

4,0

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

4,9

Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

Испытуемый

Успех в общении с противоположным полом (баллы)

Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

Это пример полной согласованности изменения двух показателей в группе — максимально возможная отрицательная взаимосвязь. Корреляционная связь между IQ и успешностью общения с противоположным полом равна -1.

А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель – длину прыжка с места.

Испытуемый

Длина прыжка с места (м)

2,5

1,2

2,0

1,7

1,9

1,3

1,7

2,3

1,1

2,6

Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

  • если коэффициент больше 0,70 – связь между показателями сильная;
  • от 0,30 до 0,70 – связь умеренная,
  • меньше 0,30 – связь слабая.

Если оценить по этой шкале полученную нами выше корреляцию между чтением и благополучием, то окажется, что эта зависимость сильная и отрицательная -0,76. То есть, наблюдается сильная отрицательная связь между начитанностью и благополучием. Что еще раз подтверждает библейскую мудрость о соотношении мудрости и печали.

Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

Корреляционный анализ в психологии

Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

В психологии иная ситуация. Например, психологи публикуют данные о связи теплых отношений в детстве с родителями и уровня креативности во взрослом возрасте. Означает ли это, что любой из испытуемых с очень теплыми отношениями с родителями в детстве будет иметь очень высокие творческие способности? Ответ однозначный – нет. Здесь нет закона, подобного физическому. Нет механизма влияния детского опыта на креативность взрослых. Это наши фантазии! Есть согласованность данных (отношения – креативность), но за ними нет закона. А есть лишь корреляционная связь. Психологи часто называют выявляемые взаимосвязи психологическими закономерностями, подчеркивая их вероятностный характер — не жесткость.

Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

  1. Анализ взаимосвязи между психологическими показателями. В нашем примере IQ и успешность общения с противоположным полом – это психологические параметры. Выявление корреляции между ними расширяет представления о психической организации человека, о взаимосвязях между различными сторонами его личности – в данном случае между интеллектом и сферой общения.
  2. Анализ взаимосвязей IQ с успеваемостью и прыжками – пример связи психологического параметра с непсихологическими. Полученные результаты раскрывают особенности влияния интеллекта на учебную и спортивную деятельность.

Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

  1. Выявлена значимая положительная зависимость интеллекта студентов и их успеваемости.
  2. Существует отрицательная значимая взаимосвязь IQ с успешностью общения с противоположным полом.
  3. Не выявлено связи IQ студентов с умением прыгать с места.

Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

Коэффициенты Пирсона и Спирмена

Рассмотрим два метода расчета.

Коэффициент Пирсона – это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

  1. Берутся значения двух параметров в группе испытуемых (например, агрессии и перфекционизма).
  2. Находятся средние значения каждого параметра в группе.
  3. Находятся разности параметров каждого испытуемого и среднего значения.
  4. Эти разности подставляются в специальную форму для расчета коэффициента Пирсона.

Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

  1. Берутся значения двух индикаторов в группе испытуемых.
  2. Находятся ранги каждого фактора в группе, то есть место в списке по возрастанию.
  3. Находятся разности рангов, возводятся в квадрат и суммируются.
  4. Далее разности рангов подставляются в специальную форму для вычисления коэффициента Спирмена.

В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

Как рассчитать коэффициент корреляции

Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

Расчет с помощью электронных таблиц Microsoft Excel

Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

Далее нажимаем галочку (то есть, рассчитать) и получаем значение , в нашем случае 0,038. Как видим, коэффициент не равен нулю, хотя и очень близок к нему.

В таблицах Excel реализована формула расчета только коэффициента Пирсона.

Расчет с помощью программы STATISTICA

Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.

Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.

Использование корреляционного анализа в дипломных работах по психологии (пример)

Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

Сам термин «корреляция» в названиях тем звучит редко – он скрывается за следующими формулировками:

  • «Взаимосвязь субъективного ощущения одиночества и самоактуализации у женщин зрелого возраста»;
  • «Особенности влияния жизнестойкости менеджеров на успешность их взаимодействия с клиентами в конфликтных ситуациях»;
  • «Личностные факторы стрессоустойчивости сотрудников МЧС».

Таким образом, слова «взаимосвязь», «влияние» и «факторы» — верные признаки того, что методом анализа данных в эмпирическом исследовании должен быть корреляционный анализ.

Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

  • каждая строка содержит данные на одного испытуемого;
  • каждый столбец содержит показатели по одной шкале для всех испытуемых.

№ испытуемого

Личностная тревожность

Агрессивность

2. Необходимо решить, какой из двух типов коэффициентов — Пирсона или Спирмена — будет использоваться. Напоминаем, что Пирсон дает более точный результат, но он чувствителен к выбросам в данных Коэффициенты Спирмена могут использоваться с любыми данными (кроме номинативной шкалы), поэтому именно они чаще всего используют в дипломах по психологии.

3. Заносим таблицу сырых данных в статистическую программу.

4. Рассчитываем значение.

5. На следующем этапе важно определить, значима ли взаимосвязь. Статистическая программа подсветила результаты красным, что означает, что корреляция статистически значимы при уровне значимости 0,05 (указано выше).

Однако полезно знать, как определить значимость вручную. Для этого понадобится таблица критических значений Спирмена.

Таблица критических значений коэффициентов Спирмена

Уровень статистической значимости

Число испытуемых

р=0,05

р=0,01

р=0,001

0,88

0,96

0,99

0,81

0,92

0,97

0,75

0,88

0,95

0,71

0,83

0,93

0,67

0,8

0,9

0,63

0,77

0,87

0,6

0,74

0,85

0,58

0,71

0,82

0,55

0,68

0,8

0,53

0,66

0,78

0,51

0,64

0,76

Нас интересует уровень значимости 0,05 и объем нашей выборки 10 человек. На пересечении этих данных находим значение критического Спирмена: Rкр=0,63.

Правило такое: если полученное эмпирическое значение Спирмена больше либо равно критическому, то он статистически значим. В нашем случае: Rэмп (0,66) > Rкр (0,63), следовательно, взаимосвязь между агрессивностью и тревожностью в группе подростков статистически значима.

5. В текст дипломной нужно вставлять данные в таблице формата word, а не таблицу из статистической программы. Под таблицей описываем полученный результат и интерпретируем его.

Таблица 1

Коэффициенты Спирмена агрессивности и тревожности в группе подростков

Агрессивность

Личностная тревожность

0,665*

* — статистически достоверна (р≤0,05)

Анализ данных, приведенных в таблице 1, показывает, что существует статистически значимая положительная связьмежду агрессивностью и тревожностью подростков. Это означает, что чем выше личностная тревожность подростков, тем выше уровень их агрессивности. Такой результат дает основание предположить, что агрессия для подростков выступает одним из способов купирования тревожности. Испытывая неуверенность в себе, тревогу в связи с угрозами самооценке, особенно чувствительной в подростковом возрасте, подросток часто использует агрессивное поведение, таким непродуктивным способом снижая тревогу.

6. Можно ли при интерпретации связей говорить о влиянии? Можно ли сказать, что тревожность влияет на агрессивность? Строго говоря, нет. Выше мы показали, что корреляционная связь между явлениями носит вероятностный характер и отражает лишь согласованность изменений признаков в группе. При этом мы не можем сказать, что эта согласованность вызвана тем, что одно из явлений является причиной другого, влияет на него. То есть, наличие корреляции между психологическими параметрами не дает оснований говорить о существовании между ними причинно-следственной связи. Однако практика показывает, что термин «влияние» часто используется при анализе результатов корреляционного анализа.

style=»text-align: center;»>

Корреляция — это просто

  • Здравствуйте! Вы на сайте автора работ по психологии.

    Здесь много моих статей, которые помогут написать ВКР.

    Имею психологическое образование и большой опыт написания работ.

    Быстро и качественно пишу на заказ любые работы по психологии.

    Правки руководителя и разъяснения включены в стоимость.

    Вы всегда можете связаться со мной.

    Пишите, звоните, оставляйте заявку на сайте. Буду рад помочь.

Главная / Статистические расчеты / Анализ взаимосвязей / Корреляция

Научные термины пугают и притягивают одновременно. Термин «корреляция» все чаще можно встретить на страницах газет, по радио, на телевидении. Им козыряют экономисты, политологи, аналитики. Но, похоже, частота использования этого термина в СМИ отрицательно коррелирует с уровнем его понимания потребителями.

В переводе на простой язык, сказанная фраза означает следующее: «Чем чаще используется термин «корреляция», тем менее точным становится содержание этого понятия в сознании людей». В реальности, возможно, это и не так – исследования не проводились. Но важно другое – корреляция в обыденном понимании отражает взаимосвязь между явлениями.

Корреляционная связь

В отличие от функциональной связи, корреляция отражает не жесткую зависимость между явлениями. Кто-то очень подкован теоретически, но эмоциональный отклик на музыку слабый. Другой мало образован, но его «пробило» на эмоции. Такая связь называется случайной, стохастической. И это сфера статистики – науки, занимающейся не отдельными явлениями, а массовыми.

Итак, корреляция отражает не функциональную, а статистическую случайную связь между явлениями (переменными). Почему случайную? Потому что заранее не известно, кто и как из слушателей будет реагировать на музыку. Но если статистический (массовый) расчет показал положительную корреляцию между образованностью и эмоциональным откликом, то это дает основания для важных выводов. Знание корреляционной связи позволяет предсказывать.

В данном примере мы с большой долей вероятности сможем утверждать, что из двух слушателей более эмоционально слушал тот, кто более образован. Это не будет однозначный вывод, ведь связь у нас не функциональная. Это будет вывод статистический, вероятностный – мы всегда можем ошибиться. Но вероятность этой ошибки не велика и заранее известна. Она называется «уровень статистической значимости». Как видим, без математики в этом вопросе все-таки не обойтись.

Коэффициент корреляции

В повседневной жизни, говоря о корреляции, например, успеха и затраченных усилий или ощущения счастья и материального достатка, мы опираемся на мифы, интуицию или досужие домыслы. Эти величины трудно измерить, перевести на язык цифр потом строго доказать их взаимосвязи. Но если мы имеем дело с явлениями, которые можно измерить, то здесь корреляцию можно рассчитать и получить коэффициент, который будет отражать силу и направление взаимосвязи.

Например, мы взяли группу из 20-ти человек и определили для каждого два параметра: возраст (посмотрели паспорт) и уровень оптимизма (провели психологический тестирование). Эти данные нужно занести в так называемую таблицу исходных данных и загрузить в статистическую программу. В итоге получим значение коэффициента корреляции. Не стоит пугаться этого числа, разгадать его тайны не так сложно.

Коэффициент корреляции может принимать численные значения в диапазоне от -1 до +1. Для анализа важны два показателя:

  • Знак коэффициента корреляции (положительный или отрицательный).
  • Абсолютное значение коэффициента корреляции (то есть, без учета знака, «по модулю»).

Сила взаимосвязи – большая сила

Вы, наверное, уже догадались, что величина коэффициента корреляции отражает силу взаимосвязи между показателями. Чем больше численное значение по абсолютной величине (без учета знака), тем сила взаимосвязи больше.

Представим, что в нашей группе корреляция между возрастом и оптимизмом равна +1. Это значит, что, взяв любых двух человек из этой группы и узнав их возраст, мы точно сможем предсказать, кто из них более оптимистичен? Кстати, вы уже поняли кто? … Правильно, тот, кто старше.

А если корреляция равна -1, то в этой группе тот, кто моложе, более позитивно смотрит на мир. И это без всяких исключений! А вот если корреляция будет -0,9, значит в закономерности есть сбой — один или два человека в преклонных годах имеют высокий оптимизм. Они и нарушают общую закономерность и «снижают» коэффициент корреляции.

А теперь попробуйте сами объяснить, что значит, если коэффициент корреляции равен 0? Правильно, в этом случае никакой связи между переменными нет. Невозможно, зная возраст, предсказать позитивность взгляда на мир. И, наоборот, нельзя, зная оптимизм двоих испытуемых, сказать, кто старше. Но и эту информацию можно использовать. При поиске оптимистов для работы в «отделе бесперспективных проектов» не стоит смотреть на возраст.

Что представляет собой корреляция?

Термин «корреляция» пугает многих людей и кажется чем-то сложным и непонятным. Однако на практике ничего устрашающего в ней нет. Корреляция – это всего лишь показатель, показывающий зависимость между событиями или объектами.

Данное понятие применяется в экономическом и статистическом анализе, психологии, биологии, математике. Например, если посмотреть на небо и увидеть густые и темные тучи, то можно прийти к выводу, что скоро пойдет дождь. Однако наше умозаключение не дает 100% гарантии. Это и является отличительной особенностью корреляцию от линейной зависимости.

Что такое корреляция?

Корреляция – это взаимозависимость случайных факторов. Она отображает приближенную взаимосвязь и не дает точных ответов. Например, в стране выросла безработица и увеличилось количество преступлений. Можно предположить, что на второй фактор повлияли первый. Но на уровень преступности также влияют воспитание, менталитет людей, уровень образования. Составить точный прогноз нереально, так как всегда есть дополнительные факторы.

Связь между событиями характеризуется коэффициентом корреляции. Значение коэффициента варьируется от -1 до +1.

Связь может быть трех видов:

  • сильной;
  • слабой;
  • отсутствовать.

Например, повышения уровня радиации негативно сказывается на здоровье человека. Межу событиями имеется обратно пропорциональная зависимость – увеличения радиации приводит к ухудшению здоровья. Коэффициент корреляции при этом имеет отрицательное значение.

Некоторые события или явления практически никак не связаны друг с другом. Утром у вас разрядился телефон, а вчера в маршрутке вам на ногу наступил мужчина. Ни одно из событий не влияет на другое. В данном случае коэффициент корреляции равен нулю.

Если коэффициент больше нуля и стремится к 1, то такая корреляция называется положительной. Она показывает прямую взаимосвязь между событиями. Например, чем выше уровень знаний, тем выше шансы поступить в университет на бюджет.

Анализ корреляционного соотношения помогает выдвинуть гипотезу о причинно-следственных связях.

Корреляция цены на нефть и курса доллара

Цена на нефть и курс американского доллара имеют обратную корреляционную связь. При росте стоимости «черного золота» курс доллара снижается и наоборот.

США обладают самой мощной промышленностью в мире и на ее нужды требуется просто огромное количество нефти. В то же время Штаты входят в первую десятку стран по уровню добычи этого природного ресурса. При этом США значительную часть добытой нефти экспортируют, что вызывает дефицит в промышленности. Для его покрытия американцы ежегодно импортируют свыше 8 миллиардов баррелей нефти.

Данного объема достаточно для влияния на курс национальной валюты. Увеличение спроса США на нефть приводит к увеличению цены на международном рынке. В свою очередь, рост объемов импорта влияет на стоимость произведенных товаров. В итоге на валютном рынке наблюдается избыток американской валюты, и ее курс начинает падать.

Корреляция в управлении инвестиционными активами

Корреляция активно используется инвесторами при формировании и управлении своих инвестиционных портфелях. Логично, что нельзя держать все свои активы в одном месте. Диверсификация позволяет значительно снизить риски.

Например, инвестор покупает акции одной крупной компании и нескольких мелких. Коэффициент корреляции акций гигантов отрасли и небольших предприятий приблизительно равен +0,8. Это достаточно большое значение и оно характеризует прямую зависимость между объектами. При падении акции крупной компании существует большая вероятность, что стоимость ценных бумаг небольших фирм тоже снизится существенная. В данном случае лучше подбирать активы таким образом, что корреляционные связи были минимальными.

Для этого, например, инвестор может составить свой портфель из акций и облигаций или акций и казначейских векселей. Облигации между собой, как и акции, также имеют прямую связь. Их коэффициент еще выше. Однако между облигациями и акциями такой зависимости нет, что и позволяет инвестору снизить риски.

Также наблюдается зависимость между странами и даже регионами. Чем ближе они находятся, тем выше коэффициент корреляции. Например, для Канады и США он составляет 0,9. В то же время для Японии и США он на 4 десятых меньше. Собственно, инвестору более выгодно покупать активы эмитентов из разных регионов.

Золото и ценные бумаги практически не коррелируются. Однако серебро и золото очень зависимы друг от друга, так же, как и евро и американский доллар. Их использование в рамках одного инвестиционного портфеля нецелесообразно.

Корреляция – это удобный и необходимый инструмент в различных сферах жизни. Она не является панацеей, но позволяет достаточно точно установить причинно-следственные связи между явлениями.

Корреляция — это взаимосвязь без гарантий

Рассмотрим пример прямой корреляции: чем выше уровень благосостояния человека, тем больше его продолжительность жизни. Обеспеченные люди питаются качественной пищей и своевременно получают врачебную помощь. В отличие от бедняков.

Однако нельзя с уверенностью сказать, что определенный олигарх проживет дольше вот этого нищего.

Это лишь статистическая вероятность, которая может не сработать для одного конкретного случая. Этим корреляция отличается от линейной зависимости, где исход известен со 100-процентной вероятностью.

Но если мы возьмем выборку из сотни тысяч богачей и такого же числа малоимущих, сравним их продолжительность жизни, то общая тенденция будет верна.

Это число, которое обозначается как «r». Оно находится в промежутке от -1 до 1. Отражает силу и полюс взаимосвязи величин. Посмотрим на примере:

Значение коэффициента Какая корреляция? О чем это говорит?
r=1 Сильная положительная корреляция Люди, которые едят чернику, обладают острым зрением. Ешьте чернику!
r Слабая положительная корреляция Некоторые люди, которые любят чернику, обладают острым зрением. Но это не точно. Короче, ничего не пока понятно. Но лучше есть чернику на всякий случай.
r=0 Корреляция отсутствует Черника и зрение никак не связаны.
r Слабая отрицательная корреляция Бывают случаи ухудшения зрения из-за черники. Не стоит рисковать.
r=-1 Сильная отрицательная корреляция Практически все, кто ел чернику, ослепли. Берегитесь черники!

Величина коэффициента корреляции рассчитывается по формуле:

Если внезапно потемнело в глазах и возникло непреодолимое желание закрыть статью (синдром гуманитария), то есть вариант попроще. Microsoft Exel все выполнит сам при помощи функции «КОРРЕЛ». Делается это так:

Судя по расчетам, рост человека практически никак не влияет на уровень зарплаты.

Реальные причины корреляции и возможные гипотезы

Курс доллара и стоимость нефти отрицательно коррелируют. Можем выдвинуть гипотезу: повышение цен на черное золото вызывает падение стоимости американской валюты. Но почему так происходит? Откуда взялась связь между этими явлениями?

Определение причины корреляции – это очень сложная задача. Переплетаются тысячи различных факторов, часть из которых скрыта.

Возможно, дело в том, что США – крупнейший потребитель нефти в мире. Каждый день они импортируют около 7,2 миллиона баррелей. Снижение цены на черное золото – хорошо для американской экономики, ведь позволяет тратить меньше денег. Следовательно, доллар растет.

Корреляция предоставляет возможность сделать вывод из статистических данных.

Например, мы выяснили, что существует отрицательная взаимосвязь между доходом персонала и его эффективностью в работе. Наша гипотеза: «Лентяи и бездельники получают больше, чем ответственные сотрудники». Тогда мы пересмотрим систему мотивации и избавимся от бесполезных людей.

Гипотеза – это лишь статистический вывод, предположение. Она вполне может оказаться ошибочной.

Согласно статистике, чем больше пожарных участвует в тушении огня, тем существенней размер ущерба. Какую гипотезу можем сделать отсюда? Пожарные приносят вред, давайте сократим их! Но если разобраться, то настоящая причина повреждения – это огонь. А увеличение числа лиц, задействованных в его тушении, – следствие масштаба пожара.

Наша вселенная бесконечна, а значит всегда можно найти несколько переменных, которые будут коррелировать между собой, несмотря на полное отсутствие причинно-следственных связей. Даже самое буйное воображение не сможет объяснить, что объединяет сыр и одеяло-убийцу:

Более подробно на эту тему смотрите в видео:

Как при помощи корреляции люди становятся богаче

Главное правило любого инвестора: не класть все яйца в одну корзину. Вложения рекомендуется диверсифицировать (что это?) – распределять. Поэтому люди покупают акции не одной компании, а десятка разных, формируя инвестиционные портфели. Если котировки какой-то фирмы упадут, то оставшиеся девять смогут отыграть падение или хотя бы уменьшить убытки.

Но это в теории, а на практике все портит корреляция. Проблема в том, что стоимости акций разных компаний внутри отрасли или даже всей страны могут сильно коррелировать. Проблемы огромной корпорации провоцируют панику на рынке, снижают стоимость иных активов, на первый взгляд не связанных между собой. В 2008 году случился крах Lehman Brothers, который вызвал цепную реакцию и обвал на мировых рынках.

Поэтому при инвестировании нужно стараться выбирать направления, которые не связаны между собой (r стремится к 0).

Например, пара «золото – облигации США» = -0,13. Если собрать портфель из совершенно независимых частей, риски финансовых потерь сократятся.

Территориальное приближение активов друг к другу усиливает корреляцию. Значит, нужно рассматривать варианты в разных точках мира, максимально удаленных друг от друга.

В жизни этот принцип тоже действует. Если ваши навыки и знания позволяют трудиться программистом, таксистом, сантехником и журналистом – вы хорошо защищены от риска безработицы.

Клинические корреляции

Болезни печени классифицируются по трем основным группам: гепатоцеллю­лярные, инфильтративные, холестатические. Эти заболевания могут быть иммун­ного и неиммунного генеза. В зависимости от мишени, на которую направлен им­мунный ответ, результатом иммунных нарушений может быть повреждение гепа­тоцитов (чаще первично поражается мембрана гепатоцитов, например при вирус­ном или аутоиммунном гепатитах). Может развиваться картина холестаза, когда в процесс предпочтительно вовлекаются желчные протоки, например при первич­ном билиарном циррозе печени, или инфильтративный вариант патологии, когда преобладает гранулематозное поражение. Определению состояния пациентов с по­дозрением на патологию печени помогают лабораторные тесты, имеющие различ­ную диагностическую ценность. Обычно при диагностике заболеваний печени оп­ределяют следующие лабораторные показатели:

1) активность сывороточных аминотрансфераз;

2) щелочная фосфатаза;

3) общий и прямой билирубин сыворотки;

4) общий белок сыворотки с определением альбумина и глобулиновых фракций;

5) протромбиновое время.

Примеры наиболее часто встречающихся изменений этих показателей при различной гепатобилиарной патологии печени представлены в табл. 7-4.

Таблица 7-4. биохимические тесты, выполняемые ПРИ ГЕПАТОБИЛИАРНЫХ ЗАБОЛЕВАНИЯХ

Тест

Некроз клеток печени

Холестаз

Ифильтративный процесс

Аминотрансфераза

++ до +++

0 до +

0 до +

Щелочная фосфатаза

0 до +

++ до +++

++ до +++

Общий/прямой билирубин

0 до +++

0 до +++

0 до +

Протромбиновое время

Увеличено

Увеличено, зави­сит от содержа­ния витамина К

Альбумин

Снижен при хронических нарушениях

Холестерин

0 до +++

Желчные кислоты

+ до +++

+ до +++

0 — норма; + до +++ — степень увеличения

При даль­нейшем лабораторном обследовании большинству больных с формированием хро­нического (длящегося более 6 мес) гепатита проводят (как минимум) следующие тесты:

1) электрофорез белков сыворотки;

2) уровень ферритина в сыворотке;

3) антинуклеарные антитела;

4) церулоплазмин сыворотки;

5) серологическое исследование маркеров вирусного гепатита В;

6) серологическое исследование маркеров вирусного гепатита С.

Эффективность такого скрининга может быть улучшена, если использовать данные табл. 7-5. В следующем разделе освещаются некоторые частные заболева­ния печени.

Таблица 7-5. диагностика гепатобилиарных нарушений

Тип повреждения печени

Необходимые лабораторные исследования

Гепатоцеллюлярный

Вирусные гепатиты

Серологические (антитела к вирусам)

Лекарственные гепатиты

Число эозинофилов

Аутоиммунный хронический активный гепатит

Иммуноэлектрофорез

Антинуклеарные антитела

Антитела к гладкомышечным клеткам

Болезнь Вильсона

Содержание церулоплазмина в сыворотке крови

Гемохроматоз

Содержание железа в сыворотке крови

Уровень ферритина сыворотки

Дефицит 1-антитрипсина

Электрофорез белков

Содержание 1-антитрипсина

Pi-типирование

Холестатический

Первичный билиарный цирроз

Антимитохондриальные антитела

Иммуноэлектрофорез

Инфильтративный

Печеночно-клеточная карцинома

-фетопротеин

Заболевания с гепатоцеллюлярными повреждениями

Вирусные гепатиты

Вирусные гепатиты — это общий термин, который имеет отношение к воспа­лительным процессам в печени, вызванным различными вирусами. Эти вирусы включают вирус гепатита A (HAV), вирус гепатита В (HBV), вирус гепатита С (HCV), вирус гепатита дельта (HDV) и вирус гепатита Е (HEV) (табл. 7-6). Кли­нические проявления вирусного гепатита весьма вариабельны: от асимптомного течения до ярко выраженной печеночной недостаточности (фульминантная фор­ма). В наиболее легкой форме гепатит протекает либо бессимптомно, либо с грип-позоподобными симптомами, а заболевание идентифицируется только оценкой уровня трансаминаз. Желтуха при вирусном гепатите обычно следует за продро­мальным периодом, который длится от нескольких дней до нескольких недель, а больные в этом периоде обычно жалуются на слабость, анорексию, тошноту, голов­ные боли, дискомфорт в правом подреберье, субфебрильную температуру. В жел­тушном периоде пальпируется гладкий, плотный край печени.

Гепатит А — как правило, легко протекающая, самоизлечивающаяся фульми­нантная форма заболевания, при которой печеночная недостаточность развивает­ся редко, а перехода в хроническую форму не бывает. Передается фекально-ораль­ным путем и имеет инкубационный период до 30 дней. Серологическая идентифи­кация гепатита А включает определение вирус-специфичных антител, представ­ленных IgM (анти-HAV IgM), что способствует диагностике острой или затяжной инфицированности вирусом гепатита А. Больной становится серопозитивным с по­явлением клинической симптоматики и всегда серопозитивен при наличии желту­хи (рис. 7-11). Этот маркер обнаруживается в крови до 120 дней на протяжении всего периода болезни. Вирус-специфичные антитела IgG к гепатиту А не имеют диагностического значения, т. к. появляются на поздних стадиях болезни и опреде­ляются в крови в течение нескольких лет после выздоровления.

Гепатит В может быть как острым, так и хроническим заболеванием. Зараже­ние происходит парентеральным путем: при внутривенном введении лекарств, пе­реливании крови, через предметы личной гигиены, а также половым путем. Сред­ний инкубационный период составляет 10 нед. Примерно у 2 % заболевших разви­вается острая печеночная недостаточность, у 5—10 % заболевание прогрессирует до хронического гепатита. Хронизация гепатита определяется при обнаружении в крови поверхностного антигена (HBsAg) продолжительностью более 6 мес (рис. 7-12). Хронизация гепатита В зависит от возраста больного ко времени ин­фицирования и состояния его иммунной системы. Хронический гепатит является основным фактором риска для развития гепатоцеллюлярной карциномы. Суще­ствует ряд серологических маркеров, помогающих обосновывать диагноз инфици­рованности вирусом гепатита В, при этом HBsAg сыворотки крови является ос­новным маркером. Появление HBsAg в крови предшествует повышению уровня трансаминаз, а персистенция антигена сохраняется в течение 1 —3 мес при острой инфекции гепатита (рис. 7-13), но примерно у 10 % больных вообще не определя­ется. Антитела к ядерному антигену (НВсАb) появляются через 2—4 нед вслед за появлением HBsAg.

Между исчезновением HBsAg и появлением специфичных антител к HBsAg (HBsAb) проходит от 3 до 5 мес при острой, самостоятельно купирующейся ин­фекции, но только НВсАb являются серологическими маркерами, доказывающи­ми перенесенную недавнюю острую инфекцию HBV. ДНК вируса гепатита В (HBV-DNA) и антиген вируса HBcAg могут быть обнаружены в сыворотке при остром гепатите В. Однако эти маркеры используются в оценке хронической инфекции, когда требуются сопоставления с течением репликации и активности вируса.

Рис. 7-11. Схема наблюдае­мых вариантов сероиммунологических показателей в периоды течения типичной вирусной инфекции гепати­та А. В ряде случаев антите­ла анти-HAV класса IgM мо­гут долго персистировать. Выделение с калом HAV может определяться крат­ковременно. (По: Schift L., Schiff E. R., eds. Diseases of the Liver. 6th ed. Philadelphia: J.B. Lippincott, 1987:465.)

Таблица 7-6. основы дифференциального диагноза вирусных гепатитов

Признаки

Гепатит А

Гепатит В

Гепатит С

Гепатит D

Гепатит Ё

Характеристики вирусов

Размер

28 нм

42 нм

38-50 нм

43 нм

32 нм

Нуклеиновая кислота

РНК

ДНК

РНК

РНК

РНК

Серологические особенности

Маркеры гепатита А

Да

нет

нет

нет

нет

Маркеры гепатита В

нет

да

нет

да

нет

Маркеры гепатита С

нет

нет

да

нет

нет

Маркеры гепатита D

нет

нет

нет

да

нет

Маркеры гепатита Е

нет

нет

нет

нет

да

РНК вирусная

да

да

да

Инкубационный период

Средний

30 сут

75 сут

50 сут

75 сут

40 сут

Максимальный

15-45 сут

30-180 сут

15-160 сут

30-180 сут

14-60 сут

Способ передачи

Фекально-оральный

Да

нет

нет

нет

да

Парентеральный

редко

Да

Да

да

нет

Половой

нет

да

возможно

Да

нет

Клиническая картина

Пик повышения АлАТ при остром процессе

Молниеносная пече­ночная недостаточ­ность

-0.1 %

-2%

-0.1 %

-5 % при коинфек­ции -70-90 % при супер­инфекции

-2%-20 % при беремен­ности

Хронический гепатит

нет

-5-10% -90 % у новорож­денных

-50-80 %

-2-5 % при коинфекции -70-90 % при суперинфекции

нет

Печеночно-кле­точная карцинома

нет

Да

Да

да

нет

Частицы дельта (HDV) представляют собой неполноценный, ДНК-содержа­щий вирус, который для своей репликации требует помощи HBV. Поэтому дельта-гепатит имеет место в каждом случае только как сопутствующий острой (коинфек­ция) или хронической (суперинфекция) инфицированности HBV. Коинфекция и HBV обычно излечимы. Суперинфекция HDV при хроническом гепатите В ассо­циируется с увеличением частоты хронического гепатита D с ускоренным развитием на этом фоне цирроза печени. HDV-инфицированность может быть диагнос­тирована серологическим методом путем выявления антител к вирусу гепатита D (анти-HD) у HBsAg-позитивных больных.

Рис. 7-12. Диаграмма, отражающая соотношения трех морфологических форм HBV-частиц и антиге­нов HBV. Показана локализация ДНК и ДНК-полимеразы в ядре HBV-частицы величиной 42 нм. (По: Koff R. S. In:SanyordJ. Р., ed. The Science and Clinical Practice of Medicine, Vol. 8. New York: Grunc and Stratton, 1981.)

Рис. 7-13. Схема последовательности сероиммунологических изменений, наблюдаемых при типич­ном гепатите В. *Антитела анти-HBs могут образовываться в раннем периоде гепатита, но часто не идентифицируются как свободно циркулирующие антитела. (По: SchiffL., Scruff Е. R., eds. Deases of the Liver, 6th ed. PhilalelphiaJ. B. Lippincott, 1987: 472.)

Вирус гепатита С (HCV) ранее описывали как «ни А, ни В»-гепатит, он состав­ляет до 90 % всех посттрансфузионных гепатитов. Факторы риска включают пере­ливание крови и/или компонентов крови, но у значительной части больных факто­ры риска не выявляются. У большинства больных с HCV развивается хроничес­кий гепатит, а примерно у 25 % — цирроз печени. К серологическим тестам для выявления антител к вирусным гепатитам HCV относят иммуносорбентный ме­тод исследования ферментных связей или метод рекомбинантного иммунного пят­на. Антитела к HCV могут сохраняться более 6 мес после инфицирования. Наибо­лее чувствительным методом диагностики гепатита С является определение РНК вируса гепатита С при помощи цепной полимеразной реакции.

Гепатит Е (HEV) ранее называли эпидемическим «ни А, ни B»-гепатитом. За­болеваемость этим гепатитом имеет место только в развивающихся странах. Он редко встречается в США, а отдельные случаи заболевания обычно связаны с посе­щением эндемических регионов. Передача инфекции происходит фекально-ораль­ным путем (аналогично гепатиту А). Эпидемии гепатита Е характеризуются высо­ким уровнем смертности, особенно беременных женщин. Но как и гепатит А, гепа­тит Е не приводит к развитию хронических заболеваний печени.

Отрицательная и положительная корреляция

Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции может быть отрицательным; положительная корреляция в таких условиях — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции может быть положительным.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени. Рассмотрим следующую задачу. Была проведена серия измерений двух случайных величин X и Y, причем измерения проводились попарно: т.е. за одно измерение мы получали два значения — xi и yi. Имея выборку, состоящую из пар (xi, yi), мы хотим определить, имеется ли между этими двумя переменными зависимость.

Зависимость между случайными величинами может иметь функциональный характер, т.е. быть строгим функциональным отношением, связывающим их значения. Однако при обработке экспериментальных данных гораздо чаще встречаются зависимости другого рода: статистические зависимости. Различие между двумя видами зависимостей состоит в том, что функциональная зависимость устанавливает строгую взаимосвязь между переменными, а статистическая зависимость лишь говорит о том, что распределение случайной величины Y зависит от того, какое значение принимает случайная величина X.

Отрицательная корреляция — это вид корреляционной зависимости между случайными величинами, при к-рой условные средние значения одной из них уменьшаются при возрастании значений другой величины. Об отрицательной корреляции между величинами с корреляции коэффициентом говорят в том случае, когда p меньше 0.

Связь между двумя переменными может быть следующей — когда значения одной переменной убывают, значения другой возрастают. Это и показывает отрицательный коэффициент корреляции. Про такие переменные говорят, что они отрицательно коррелированы.

Примером отрицательной корреляции может быть взаимосвязь между бесполезно потраченным временем и средним баллом. Бесполезно потраченное время можно операционально определить, как количество часов в неделю, потраченное на определенные занятия, например на игру в видеоигры, просмотр телесериалов или игру в гольф (конечно, эти виды! деятельности можно назвать и «терапией»). Ниже приведены гипотетические данные для других восьми студентов. На этот раз вы увидите обратную взаимосвязь между количеством часов в неделю, потраченных впустую, и средним баллом:

Взаимосвязь между временем, посвященным занятиям, и оценками является примером положительной корреляции. Приведенные ниже данные, полученные в ходе гипотетического исследования восьми студентов, говорят о наличии положительной корреляции. В данном случае первой переменной является время, операционально определенное как количество часов в неделю, потраченных на учебу, а второй — средний балл (СБ), варьирующийся от 0,0 до 4,0.

Значительное время, потраченное на учебу (42 часа), связано с высоким средним баллом (3,3), а самое малое время (16 часов) — с низким баллом (1,9).

Примером отрицательной корреляции может быть взаимосвязь между бесполезно потраченным временем и средним баллом. Бесполезно потраченное время можно операционально определить, как количество часов в неделю, потраченное на определенные занятия, например на игру в видеоигры, просмотр телесериалов или игру в гольф (конечно, эти виды! деятельности можно назвать и «терапией»). Ниже приведены гипотетические данные для других восьми студентов. На этот раз вы увидите обратную взаимосвязь между количеством часов в неделю, потраченных впустую, и средним баллом:

Обратите внимание, что при отрицательной корреляции переменные имеют обратную взаимосвязь: большое количество потраченного зря времени (42) связано с низким средним баллом (1,8), а небольшое (16) — с более высоким (3,7).

Силу корреляции показывает особая величина описательной статистики, носящая название «коэффициент корреляции». Коэффициент корреляции равен -1,00 в случае прямой отрицательной корреляции, 0,00 при отсутствии взаимосвязи и + 1,00 при полной положительной корреляции. Наиболее распространенным коэффициентом корреляции является пирсоново r, названное так в честь британского ученого, соперничающего в известности с сэром Рональдом Фишером. Пирсоново r вычисляется для данных, полученных с помощью интервальной шкалы или шкалы отношений. В случае других шкал измерений рассматриваются другие виды корреляции. К примеру, для порядковых данных (т. е. упорядоченных) вычисляется «ро» Спирмена. В приложении С показано, как вычислять пирсоново r.

Так же как среднее арифметическое и стандартное отклонение, коэффициент корреляции является величиной описательной статистики. В ходе заключительного анализа определяется, является ли конкретная корреляция значимо большей (или меньшей) нуля. Таким образом, для корреляционных исследований нулевая гипотеза (Н0) говорит, что действительное значение r равно 0 (т. е. нет никаких взаимосвязей), а альтернативная гипотеза (Н) — что r № 0. Отвергнуть нулевую гипотезу — значит решить, что между двумя переменными существует значимая взаимосвязь. В приложении С показано, как определить, является ли корреляция статистически значимой.

Отрицательный коэффициент корреляции означает, что для любых двух переменных X и Y увеличение X связано с уменьшением Y. Отрицательная корреляция демонстрирует связь между двумя переменными в том же путь положительный коэффициент корреляции, а относительные силы одинаковы. Другими словами, коэффициент корреляции 0,85 показывает ту же силу, что и коэффициент корреляции -0. 85.

Коэффициенты корреляции всегда равны между -1 и 1, где -1 показывает идеальную линейную отрицательную корреляцию, а 1 показывает идеальную линейную положительную корреляцию. Коэффициент корреляции, равный нулю или очень близкий к нулю, не показывает значимой взаимосвязи между переменными. На самом деле эти цифры редко встречаются, так как очень мало идеальных линейных отношений. Вместо этого числа, приближающиеся к этим значениям, используются для демонстрации силы отношения; например, 0. 92 или -0. 97 продемонстрировали бы, соответственно, очень сильную положительную и отрицательную корреляцию. Как и во всех статистических данных, демонстрирующих корреляцию, это не доказывает причинности.

Проще всего понять примеры отрицательных корреляций на примерах. Простым было бы измерение количества снегопада и температуры. По мере увеличения температуры уменьшается количество снегопада; это показывает отрицательную корреляцию и будет, кстати, иметь отрицательный коэффициент корреляции. Положительным коэффициентом корреляции будет соотношение между температурой и продажами мороженого; по мере роста температуры, так делают продажи мороженого. Это соотношение будет иметь положительный коэффициент корреляции. Отношение с коэффициентом корреляции, равным нулю или очень близким к нулю, — это продажа температуры и быстрого питания (или, по крайней мере, это то, что мы предположили бы).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *